Как сделать мигалку самому

Мигалка на светодиодах

Собираем мигалку своими руками

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания. Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор. Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер – Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения – около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно – оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 – 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

ТранзисторыVT1, VT2

КТ315 с любым буквенным индексомЭлектролитические конденсаторыC1, C210. 100 мкф (рабочее напряжение от 6,3 вольт и выше)К50-35 или импортные аналогиРезисторыR1, R4300 Ом (0,125 Вт)МЛТ, МОН и аналогичные импортныеR2, R322. 27 кОм (0,125 Вт)СветодиодыHL1, HL2индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» – транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n, а КТ361 – p-n-p. Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы.

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 – 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте тут.

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение – 10. 16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром, чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Как сделать мигалку из светодиода: инструкции и схемы

Собирать мигающий светодиод своими руками нет большой необходимости. В продаже давно появились такие диоды разных моделей и цветов, и для их работы не нужно дополнительных управляющих устройств. В этой микро-лампочке внутри колбы впаяна схемка, благодаря ей и происходит мигание. Но радиолюбителю неинтересно покупать готовую технику, он хочет сделать сам.

Читайте также:  Как сделать красивый фотоальбом

Принцип действия светодиода

В отличие от работы обычного светодиода в схему добавляется конденсатор. Он накапливает энергию, после чего происходит лавинный пробой, и диод загорается на доли секунды. Потом снова заряжается – и снова пробой. Таким образом и происходит мигание.

Простейшая схема выглядит так:

Как сделать светодиодную мигалку своими руками

Вернемся к схеме. В ней задействованы (слева направо): светодиод, транзистор типа КТ315, резистор 1 кОм и под ним конденсатор электролитический на 16 вольт и емкостью 1000-3000 мкф.

Теперь посмотрим, как собирается подобная простая мигалка.

Что нужно

  • Паяльник с тонким жалом, канифоль и припой.
  • Транзистор КТ315 или аналог.
  • Светодиод.
  • Блок питания на 12 вольт (лучше регулируемый) или другой источник с таким напряжением.
  • Какой-либо корпус под вашу мигалку или конструкцию, в которую будете монтировать диод (необязательно; для пробной сборки можно выбрать спичечный коробок).

Последовательность сборки мигалки

Будем двигаться от источника питания.

  • К выводу «+» от источника припаиваем резистор.
  • Свободный контакт резистора припаиваем к эмиттеру транзистора. Как определить эмиттер и другие контакты, смотрите видео:

  • Дальше эмиттер соединяем с «+» выводом конденсатора. Определить плюс и минус можно по маркировке на корпусе. Минус обозначается светлой полоской.

  • Следующий этап – соединение контакта «коллектор» транзистора с «+» выводом диода. КТ315 имеет такой контакт посередине. Плюсовой вывод диода можно определить визуально. Внутри его колбы находится пара электродов. Тот, который меньше размером, он плюсовой.

Для наглядности рекомендуем посмотреть видео-инструкцию:

  • Осталось два действия. Припаиваем «-» диода к «-» источника питания и к этой же линии цепляем «-» конденсатора.

В итоге может получиться такая пробная мигалка:

Несколько советов

Во-первых, рекомендуем брать регулируемый блок питания. Часто даже правильно собранная схема работает неверно. В таком случае иногда достаточно немножко подкрутить входное напряжение регулятором на блоке.

Во-вторых, покупайте только качественные детали.

В-третьих, если вам кажется, что мигалка на светодиоде не пригодится вам в быту, хорошо подумайте и оглянитесь вокруг. Или поищите в интернете информацию, где их применяют. Вы наверняка найдете что-нибудь интересное.

Если же просто решили освоить азы радиолюбителя, то такого вопроса и не возникнет. Пробуйте собирать простые схемы и переходите к сложным. Например, к так называемым адресным светодиодным лентам, которые используются уже для серьезных комбинаций мигания света сразу между несколькими светодиодами, а то и десятками светодиодов.

В заключение

Опытный радиолюбитель всегда найдет применение старым деталям. В отработавших телевизорах, радиоприемниках и другой технике можно найти редкие транзисторы, тиристоры, резисторы, конденсаторы, диоды и прочие радиодетали.

Один умелец, например, сделал мигалку для игрушечной пожарной машины. Почему бы и нет.

Пишите комментарии, если вас заинтересовали мигающие светодиоды. И не забывайте делиться статьей в соц.сетях!

Как сделать мигающий светодиод

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Читайте также:  Как сделать древо жизни

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Как сделать мигалку самому

Простая мощная мигалка-двухполюсник на 12/24 Вольта.

Автор: Carabas
Опубликовано 26.12.2011
Создано при помощи КотоРед.

История вопроса: Мой шурин работает в автомастерской на фирме, которая занимается перевозкой тяжёлых и негабаритных грузов на близкие и дальние расстояния. Как-то зашёл у нас разговор по поводу жёлтых мигалок (что-то вроде изображённой на рис.1), которыми оборудованы эти «дальнобои». Шурин посетовал, дескать моторчики в этих мигалках в рейсах постоянно ломаются, что создаёт массу неудобств.

Читайте также:  Как создать рисовый клей

«Вот тут мы закупили для пробы 10 штук с электронной начинкой, распотроши одну и посмотри, может спаять таких несколько платочек и вставить в нерабочие мигалки?» – спросил он. Вскрытие показало наличие схемы с заслуженным таймером NE555 с обвязкой, раскачивающим мощный MOSFET и интегральным стабилизатором на 12 Вольт для запитки этого самого таймера. Воистину лень – двигатель прогресса. Перспектива рисовать – травить – сверлить меня не вдохновила и подумалось: а что, если порыться в тырнете, может есть что попроще? Неужели в 21 веке…?, когда космические корабли бороздят…? для какой-то мигалки ничего интереснее не найти?! Увы, не нашлось (а может плохо искал). Взгляд наткнулся на так называемые мигающие светодиоды (Blinked Led). Заинтересовало. Почитал о них подробнее. А вот здесь можно посмотреть: https://video.mail.ru/mail/obrazovanie-new/5107/7064.html где господа из «Чип и Дип» утверждают, что структурная схема светодиода (далее BL) соответствует приведённой на рис.2

Шурин с оказией был заслан на Митинский радиорынок с одним условием – «Купи парочку на пробу и чтоб моргали пореже, как ваши мигалки». В предвкушении он купил сразу десяток и выдал мне полную ТТХ словами: «Продавец сказал три вольта, двадцать миллиампер, светится – белым». Ну что-ж, ладно, перейдём к фазе экспериментальной теории. Была спаяна схемка (рис.3)

Резистор номиналом 3КОм (на всякий случай, чтоб не насиловать предельными токами). Осциллограф показал следующее: U1- 3.0V, U2- 7,0V практически не изменяются при варьировании Uпит. от 9 до 30 Вольт. Период следования импульсов около секунды. И чем же мы будем управлять этими импульсами? Поиск по даташитам привел к недорогому и популярному в широких кругах транзистору IRFZ44N. Вот его характеристики (рис.4)

Транзистор закрыт при U затвора до 3.5 Вольт, а уверенно открывается при напряжении 6 Вольт и выше. Причём при напряжении на затворе 7.0 Вольт сопротивление канала порядка 22 миллиОм, что есть очень даже неплохо.

Предполагаю (чисто теоретически), что резистор R1 на рис.2 нам вреден потому, что

суживает диапазон U2 – U1 (рис.3), а напряжение U1 нам важно с точки зрения полного запирания канала. Ставят же его только в BL с высоким напряжением питания (6V, 9V…). В нашем случае применён 3-х вольтовый BL, где вроде-бы резистор отсутствует. но конкретный BL мне попался случайно и поэтому здесь есть большой простор для экспериментов и в подборе BL, и в подборе MOSFETа.

Теперь переходим к фазе практики. Паяем схему (рис.5)

На всякий случай скажу, что короткий вывод BL подключается обычно к «-», но если перепутаете, не страшно – внутри установлен защитный диод D. Кстати это касается и транзистора. Правда переполюсовкой всей схемы увлекаться не стоит, поскольку диод в транзисторе имеет падение напряжения порядка 1 вольт и будет перегреваться при больших проходящих токах. Для начинающих радиолюбителей также замечу, что корпус транзистора нельзя «сажать» на массу. Вот, что у меня получилось: (рис.6)

В качестве нагрузки я использовал галогенку с двумя спиралями на 12 вольт (55 и 60 Ватт соответственно), включёнными последовательно. Источник питания – старенький ЛАТР с выпрямителем на 5 Ампер. IRFZ44N не нагревается совершенно (комнатная температура). Схема уверенно работает от 9 до 30 вольт (выше не пробовал, лампу жалко и ЛАТР тоже). Изоляция – бумажный скотч.

«И где же тут двухполюсник?» – спросите Вы. Когда я объяснял шурину схему подключения сего дивайса, то после очередного вопроса с его стороны понял горькую истину – моя схема колоссально сложная и грамотно подключить её сможет редкий электрик. Архиважно кардинально упростить схему подключения к нагрузке, посижу-ка я, подумаю ещё. И вот что надумал: (рис.7)

По сути это двухполюсник. Мы можем подключать нагрузку в нижнее плечо, в верхнее плечо и даже в оба плеча одновременно. Это может быть полезно, например в автомобиле, где лампы одним электродом жёстко привязаны к массе кузова. Можно управлять включением устройства дистанционно при помощи тумблера, например, включенного в разрыв R1. А вот так я его сваял в «железе» : (рис.8)

По поводу деталей:

Марки BL не знаю, приблизительные данные см. выше. При подборе MOSFETа сверяйтесь с характеристиками его затвора (GATE) по даташиту (Datasheet), ( GOOGLE – Ваш помощник).

С1- не ниже 10 мФ (лучше с запасом по ёмкости и по напряжению). VD1- любой кремниевый диод на 30V, 250 mA. А вот фотография лабораторного испытания двухполюсника : (рис.9)

Большущий Адронный Коллаэдр отдыхает.

Помогали мне , как обычно: Мурик и Тошка. (рис.10)

С уважением и наилучшими пожеланиями всем осилившим этот опус:

Мультивибратор-мигалка своими руками

Привет всем любителям самоделок. Многие начинающие радиолюбители собирают радиоконструкторы, которые помогают понять принцип работы отдельных компонентов, конденсаторов, транзисторов и диодов. В данной статье я расскажу, как сделать простой мультивибратор на основе кит-набора, заказать который можно на алиэкспресс по ссылочке в конце статьи. Данный кит-набор поможет вам в освоении навыков пайки, а также понятия, что и как работает. Такой радиоконструктор часто применяется в радиошколах, а его плюсом является то, что подойдет для сборки даже новичкам, сложного в сборке ничего нет.

Перед тем, как перейти к прочтению статьи, предлагаю посмотреть видео, где показан процесс сборки и небольшая проверка готового кит-набора.

Для того, чтобы сделать мультивибратор-мигалку своими руками, понадобится:
* Кит-набор
* Паяльник, припой, флюс
* Бокорезы
* Приспособление для пайки “третья рука”
* Аккумулятор с напряжением 3.7 вольт
* Мультиметр

Шаг первый.
Комплект данного кит-набора весьма скромный, деталей здесь не очень много, всего четыре резистора, два транзистора 9014, парочка светодиодов и полярных конденсаторов и сама печатная плата, качество которой можно считать средненьким, дорожки выполнены с одной стороны.








Также не забыли положить в провода для подключения питания. Количество компонентов говорит само за себя, сборка будет под силу всем.

Для начала нужно определить номиналы резисторов, на схеме у нас их четыре, а сами номиналы подписаны на плате. Определить сопротивление резисторов можно при помощи мультиметра, если же его нет, то потратив чуточку больше времени можно сделать это, воспользовавшись справочной таблицей и цветовой маркировкой на корпусе резистора, также есть сайты с онлайн-калькулятором, в котором можно просто ввести цвета полосок на резисторе и узнать его сопротивление.






Также определить полярность конденсатора можно по длине выводов, длинный вывод-плюс, короткий-минус.

Шаг третий.
Теперь нужно установить два транзистора с маркировкой 9014, располагаем их согласно рисунку на плате, который повторяет контур полукруглого корпуса.

Ссылка на основную публикацию