Как сделать мигающую гирлянду

Простая мигалка для ёлочной гирлянды

Для устройства понадобится всего 5 деталей, их можно приобрести в магазине или взять из старых приборов. Для такой мигалки не обязательно делать печатную плату, все детали крепятся внутри корпуса.

Схема расчитана на одну гирлянду, но в случае необходимости можно подключить вторую, она обозначена пунктиром.

КОММЕНТАРИИ

Есть еще проще – всего 2 детали:
1. конденсатор 0,5-2мкф на напряжение не ниже 250в
2. стартер от лампы дневного света

блин, отформатировалось не кстати.
во общем конденсатор включается параллельно стартеру (от лампы дневного света) и вся эта конструкция включается последовательно с гирляндой.
от емкости конденсатора (0,5-2,0 мкф) зависит частота моргания

В заводском “домике” с электрическая схема выглядит следующим образом (и наверное это правильно с точки зрения подавления помех):
– на входе 220В зашунтировано конденсатором МБМ 0,1мкФ 250В
– далее идет: дроссель ДМ-0,4 100мкГн – стартер – дроссель ДМ-0,4 100мкГн (вся эта цепочка запараллелена конденсатором МБМ 1мкФ 250В, а так же тумблером) и на нагрузку.
Тумблером включаем на постоянное свечение.
Я бы поставил все конденсаторы на 300В и более современные и малогабаритные. А меняя емкость конденсатора 1мкФ 250В – подобрал частоту переключения на свой вкус.

не знаю когда это было написано первый раз тут
2 Lexx кондёр не нужен внутри старёра уже есть.

включите последовательно в цепь ёлочной гирлянды стартёр от лампы дневного света,гирлянда то же мигает, правда хаотично.

Александр , а немогли бы Вы выложить схемку этого “домика”? Просто хотелось бы поподробнее чтобы понять что там и как . Как подсоединены конденсаторы,как дроссели.

Для этого в магазине электротоваров необходимо купить стартер-пускатель на 220 вольт для ламп дневного света и согласно схемы подсоединить его последовательно к гирлянде. Мощность гирлянды не должна превышать мощности, указанной на корпусе стартера. Каждый стартер имеет свою частоту мигания. Поэтому, если вы повестите на елку 2-3 гирлянды, в каждую из которых последовательно включен стартер, они будут мигать попеременно. Подбирая стартер, лучше опробовать несколько штук, так как каждый, даже абсолютно одинаковый по характеристике стартер мигает по-своему. Параллельно со стартером можно подключить обычный выключатель. Если вам надоест мигание, выключите его, и гирлянда будет гореть постоянно.

Киевский семиклассник В.Басовский предлагает спрятать стартер в самодельный фанерный домик и поставить его под елкой. В то время, когда гирлянда гаснет, загорается красным цветом неоновая лампочка стартера. Если на задней стенке домика укрепить зеркало, то окно будет светиться.

В журнале “Неделя” №46 1970 года http://radiofanatic.ru/images/369_1.jpg

Вот если бы автор еще расписал (для чайников) какие детали использованы на схеме – было бы вообще “аллес гуд”!

Алексей, все детали на схеме подписаны R1 – 2,4 KОм мощностью не менее 2-х ватт. R2 10КОм-подстроечный(крутилка) на схеме со стрелкой. С1 – электролитический конденсатор 50мкФ на напряжение не меньше 250вольт, Диод Д226Б, можно поставить 1N4007. Тиристор КУ201Н. Ну и кружок с крестиком это лампочка на 220вольт, вместо нее можно включить гирлянду =)

Е 1 а также те кто будет делать мигалку по выложеной вверху схеме ! Я сам делал такую мигалку и скажу вот что- Тиристор у меня КУ-202 Л , резисторы на 2 Ватта лучше сразу заменить минимум 5 Ваттными ! Греются они как утюг ! Далее неверьте что переменный резистор достаточно на 10 КилоОм! Придётся подбирать его. У меня при 10 килоОмах было мерцание, чуть лучше чем мигалка со стартером. Добивался чтобы лампа гасла и зажигалась типа как реле. Добился поставив три резистора по 47килоОм 5 Ватт и переменный 68 килоОм 1 Ватт которым регулирую частоту вспышек. Кондёр можно такой как на схеме! Но 10 килоОм. Забудьте!

Далее здесь ненаписано что мощность лампы( гирлянды) показаной на схеме пунктиром должна быть половина мощности лампы( гирлянды) показанной сплошной линией! Тоесть-если лампа показаная спплошной на мощность 100 Ватт ,то та которая пунктиром нарисована должна быть 40 так как 50 Ваттных лампочек нету.

Это не схема а какаята билиберда!

Арсен, схема то рабочая). НО! Много в ней неточностей ! Я выше отписал что и как- многое зависит от самого тиристора.

Lexx, а перед стартером можно поставить ещё и диод, типа д 226б. или тот же 1N4007. Мигать будет чуть медленнее. А паралельно диоду можно припаять тумблерок, меняющий частоту мигания. Тоже не хило.

Как сделать гирлянду из лампочек и светодиодов?

Украшение домов, магазинов, промышленных объектов сегодня популярно выполнять при помощи гирлянд. Этот элемент декора давно известен на отечественном рынке, как неотъемлемый атрибут новогодних праздников. А с развитием технических средств новогодняя гирлянда стала доступной и для других сфер деятельности человека. Но в связи с низким качеством китайских гирлянд, заполонивших рынок, да и просто из любопытства многие обыватели задаются вопросом, как сделать гирлянду из лампочек и светодиодов своими руками.

Что нужно знать по поводу гирлянды?

Заводские модели представлены в широком ассортименте, но качество исполнения многих гирлянд оставляют желать лучшего. Изготавливая самостоятельно, вы можете выбрать все комплектующие материалы, помимо этого сэкономить на изготовлении и расходах на доставку.

Перед изготовлением елочной гирлянды или другого светового декора необходимо определиться с такими параметрами:

  • Тип лампочек – существуют светодиодные лампочки, накаливания, люминесцентные, галогенные.
  • Способ подключения лампочек – посредством параллельного или последовательного соединения в цепи.
  • Напряжение питания – в зависимости от типа осветительных приборов, для гирлянды может использоваться напряжение в 220В, 24В, 12В, 3В или другие номиналы.
  • Способ токосъема – в зависимости от конструкции лампочки может производиться посредством цоколя, штекера, пайки или разъема.

В виду того, что все пункты определяют параметры работы готовой гирлянды, их нужно продумать еще на этапе приобретения или заготовки материалов. Разберем эти пункты более детально.

Тип лампочек

Лампочки накаливания – довольно распространенный тип для создания световых эффектов, но эта характеристика обуславливается относительной дешевизной и неприхотливостью. Лампочки накаливания обладают относительно низким соотношением производимого светового потока к потребляемой из сети мощности. Сама конструкция достаточно хрупкая и боится механического воздействия, из-за разгерметизации колбы лампочка сразу выходит со строя.

Светодиодные лампочки – такие световые элементы являются наиболее современными и все больше вытесняют с рынка все остальные виды оборудования. Такая популярность светодиодных ламп обуславливается их значительно большей надежностью и выгодой для гирлянды. Свечение светодиодов в лампочке выдает максимально выгодный световой поток по отношению к потребленной мощности в сравнении с другими типами ламп, но они ощутимо реагируют на параметры напряжения сети. Наряду с лампочками для светодиодных гирлянд применяются отдельно устанавливаемые светодиоды или ленты с уже набранными элементами.

Люминесцентные лампочки – куда более эффективны в части соотношения вырабатываемого светового потока и потребляемой мощности, они превосходят свечение ламп накаливания, но существенно уступают светодиодным. Но их работа обеспечивается парами ртути и других газов, которые при разгерметизации улетучиваются из колбы и могут нанести вред здоровью. Помимо этого такие лампочки требуют определенного времени на разогрев и дают сбой при низких температурах, поэтому для уличных гирлянд, работающих зимой, их не используют.

Галогенные лампочки – удобный маломощный вариант для изготовления гирлянд. Но, обладают относительно низким соотношением свечения ламп к потребленной из сети мощности. Но, в отличии от всех вышеперечисленных лампочек, они бояться прикосновения руками, такую модель гирлянды можно брать только через специальную перчатку или нужно помещать в трубку.

Наиболее востребованными вариантами для гирлянды являются лампы накаливания и светодиодные лампочки. Параметры элемента выбираются в соответствии со способом подключения.

Способ подключения

По способу подключения лампочек выделяют последовательное и параллельное подключение. Каждая из схем имеет свои особенности в электроснабжении, которые нужно учесть еще на этапе проектирования гирлянды.

Последовательное подключение лампочек в электрической гирлянде представляет собой такое соединение, в котором конец одного элемента подключается к началу следующего. При этом ток, протекающий через гирлянду, будет одинаковым для всех лампочек.

Пример схемы такой гирлянды приведен на рисунке ниже:

Рис. 1. Последовательное соединение лампочек

Здесь к гирлянде прикладывается напряжение сети, но на каждой отдельной лампочке происходит падение напряжения, пропорциональное ее сопротивлению. Соответственно, необходимо рассчитывать величину напряжения на каждый элемент. В случае превышения величины прикладываемого напряжения больше номинального, в цепь припаивают резистор. Если напряжение меньше номинального, через сеть будет протекать и меньший ток, в результате снизится интенсивность свечения.

Параллельное соединение представляет собой подключение одноименных выводов светодиодов или лампочек в одну точку.

Рис. 2. параллельное соединение лампочек

Посмотрите на рисунок 2, здесь приведен пример параллельной схемы включения. Особенностью такого варианта подключения является приложение входного напряжения к каждому элементу, а вот ток, протекающий через лампочку, будет зависеть от ее сопротивления.

Для обеих схем подключения играет роль мощность источника питания. К примеру, гирлянда для новогодней елки, питаемая от электрической сети, ограничивается только номиналом автомата на вводе. А получающая электроснабжения от блока питания, будет ограничиваться его заводской мощностью.

Следует отметить, что при последовательном подключении ножек диодов или лампочек, перегорание одного из элементов приведет к выходу со строя всей гирлянды. А вот в параллельной схеме такая проблема отсутствует, если сгорит одна лампочка, остальные в гирлянде продолжат гореть.

Расчет электрической схемы

К примеру, вы используете для подключения пару пальчиковых батареек, которые выдают в электрическую цепь гирлянды 3 В. Для такого напряжения выгодно использовать параллельное соединение светодиодов. К примеру, будет устанавливаться модель потребляющая 0,02 А, при выдаваемом от источника токе в 1 А. Чтобы рассчитать максимально допустимое количество по нагрузке необходимо: 1/0.02 = 50 шт.

Исходя из этого, в гирлянду вы можете установить не более 50 светодиодов, если расстояние между ними сделать по 5 см, то общая длина составит: 50 * 5 = 250 см.

При необходимости сделать большую длину или установить большее количество лампочек, чтобы повысить мощность, необходимо использовать другой блок питания. Для последовательной электрической схемы расчет производится по тому же принципу, только по величине прикладываемого напряжения.

Идея N1. Простейшая гирлянда своими руками

Наиболее простым вариантом гирлянды является подсветка из светодиодных лент. Они подходят как в качестве новогодних украшений, так и для выделения контура витрины, элементов интерьера. Их преимущество заключается в гибкой конструкции, поэтому ничего паять вам уже не нужно, достаточно приклеить их к несущей поверхности или конструкции. Но перемещать ее, как классический вариант, не получится.

Самые простые модели на 220 В – для них нужно припаять электрическую вилку и установить в нужное место. Чаще всего их используют для наружной установки.

Для освещения елочных украшений внутри помещения используют светодиодные ленты на 12 В. Это более безопасные модели, но для их подключения обязательно используется блок питания.

Значительно сложнее изготовить гирлянду из RGB ленты, так как при ее подключении необходимо использовать большое количество механизмов.

Процесс будет включать в себя такие действия:

  • Рассчитайте общую длину гирлянды, так как величина ленты не может превышать 5м. Все что выше 5м должно подключаться от отдельной системы питания.
  • Установите блок питания – он необходим для понижения напряжения до 12В.
  • Подключите к блоку питания контроллер для RGB ленты – это устройство позволит выбирать цвет свечения и режим работы.
  • При длине более 5м установите усилитель на следующую ленту или подведите питание от другого комплекта блок питания / контроллер.
  • Закрепите RGB ленту на поверхности и подключите к контроллеру.

Более детально с принципами подключения RGB ленты вы можете ознакомиться в соответствующей статье — https://www.asutpp.ru/podklyuchenie-rgb-lenty.html

Идея N2. Мигающая гирлянда из светодиодной ленты

Прямое подключение белой светодиодной ленты является малоиспользуемым вариантом гирлянды, так как режим свечения здесь только один. Но с определенным дополнением ее можно существенно модернизировать, изменив режим с обычного свечения лампочки на мигающий. Для этого вам понадобится светодиодная лента, RGB контроллер, пульт к контроллеру, блок питания.

  • Светодиодную ленту разделите на три участка (они и будут перемигивать с различной последовательностью). Минимальным участком является расстояние между разметками для разреза. Отделение участков произведите по минусовой шине в специально отведенных местах, как показано на рисунке: Рис. 3: вырежьте контактную площадку
  • ту же процедуру повторите с оставшимися двумя участками. В данном примере каждый участок включает в себя три светодиода. При вырезании контактной площадки важно нарушить электрическое соединение между ножками светодиодов. Рис. 4: лента, разделенная на три участка
  • Возьмите четыре разноцветных провода, зачистьте концы и полудите их оловом. Рис. 5: полудите концы проводов оловом
  • Нанесите олово на контакты ленты, как показано на рисунке. Рис. 6: нанесите олово на контакты ленты
  • При помощи паяльника припаяйте к контактам ленты провода. Рис. 7. припаяйте провода к контактам на ленте
  • Провода от контактных площадок и от края заведите за ленту, дополнительно их можно упорядочить скотчем или пластырем. Рис. 8: упорядочьте провода
  • Зачистите провода и подключите выводы ленты к RGB контроллеру при помощи клеммника. Рис. 9: подключите ленту к контроллеру
Читайте также:  Крестовый поход за чудесами

Гирлянда готова, подключите ее к сети через блок питания и можете наслаждаться мигающими огнями. При помощи пульта контроллера вы можете осуществлять переключение гирлянды в разные режимы (мигание, поочередное перемигивание участков и другие варианты).

Готовая светодиодная лента с бегущими огнями

Идея N4. Гирлянда из светодиодов

Для этого вам понадобится паяльник, припой, канифоль, светодиоды, соединительные провода (подойдут даже тонкие сетевые провода), вилка или батарейка, блок питания, кнопка или переключатель. В данном примере рассмотрим изготовление гирлянды, работающей от батареек.

  • К контактам в корпусе блока питания под батарейки припаяйте питающие провода.
  • Припаяйте светодиоды к проводам, но обязательно учитывайте, что приложенное к одному светодиоду напряжение не должно превышать его номинального, поэтому при последовательном подключении диодов в цепь питания светодиода обязательно включается резистор. Рисунок 11: подключение светодиода

Сопротивление резистора рассчитывается таким образом, чтобы свести падение напряжения на светодиоде к номинальному.

  • Ту же процедуру повторите с остальными светодиодами.
  • К блоку питания из батареек припаяйте переключатель. Рис. 12: припаяйте переключатель
  • Подключите светодиоды к блоку питания и вставьте батарейки в блок. Если они не держаться, можно примотать батарейку скотчем или зафиксировать резинкой, гирлянда готова.

Готовая гирлянда из светодиодов

Идея N5. Ретро гирлянда

Ретро гирлянды популярны при оформлении фотозон, террас, беседок, витрин и других объектов. И вовсе не обязательно приобретать готовое изделие, так как собрать ее под силу каждому. Для этого вам понадобиться: соединительный провод (хорошо обзавестись проводами в тканевой изоляции), патроны (наиболее удобные модели с зажимами под провода), непосредственно сами лампочки накаливания (можно брать и светодиодные), вилка и переключатель. В данном примере рассмотрим последовательное соединение лампочек, некоторые патроны будем использовать со встроенным переключателем.

  • Нарежьте провода на кусочки нужной длины – они будут определять расстояние между точками свечения. Рис. 13: нарежьте провода отрезками
  • Зачистьте на концах изоляцию проводов, в этих местах они будут подключаться к патрону, поэтому длина жилы должна быть соответствующая. Рис. 14: зачистите концы проводов
  • Если вы используете провод с тканевой изоляцией, то ее край необходимо фиксировать с помощью изоленты, чтобы ткань не растрепывалась дальше. Рис. 15. зафиксируйте изоляцию с помощью изоленты
  • Разберите сам патрон и проденьте провода в крышку патрона. Рис. 16: проденьте провода в крышку патрона
  • Подключите концы проводов к контактам патрона Рис. 17: подключите провода к патрону
  • Соберите корпус патрона, лишнюю длину проводов из-под крышки следует аккуратно вытянуть, не допуская излишних усилий, чтобы не ослабить контакт. Рис. 18: соберите корпус патрона
  • Ту же процедуру повторите и с остальными патронами, После чего можете произвести фиксацию лампочек в них.
  • Провод от последней лампочки разрежьте, вам понадобится из него одна жила, которую нужно подключить в разрыв переключателя. Рис. 19: подключите переключатель
  • Края провода подключите к штепсельной вилке, для этого их необходимо завести в паз каждого контакта и зажать при помощи отвертки. Остальной провод упорядочьте, чтобы он не выпирал, корпус вилки должен нормально закрываться. Рис. 20: края провода подключите к вилке

Ретро гирлянда готова к использованию – включите в розетку и наслаждайтесь. При желании вы можете дополнить антураж гирлянды потемневшим проводом или патроном – их можно окрасить в соответствующий цвет. Для большего лоска провода окрашивают золотистой или бронзовой краской.

Готовая гирлянда в ретро стиле из лампочек

МИГАЮЩАЯ СВЕТОДИОДНАЯ ГИРЛЯНДА

Предлагаемая мигающая светодиодная гирлянда состоит из 18 светодиодов и может быть использована для украшения новогодней елки, иллюминации витрин и рекламных вывесок при декорации домашнего интерьера и т.п. Схема данного устройства приведена на рисунке. На транзисторах VT1, VT2 и резисторах R1, R2 собран стабилизатор тока для питания светодиодной гирлянды, которая включена между коллектором транзистора VT1 и плюсовым источником питания. Изменением номинала резистора R1 можно менять силу тока протекающего через светодиоды гирлянды. Ориентировочное значение данного тока можно вычислить по формуле: I = 0,65/R1, где 0,65 – среднее значение напряжения между базой и эмиттером транзистора VT2, при котором происходит его открывание.

Схема

На транзисторе VT4 собран генератор импульсов частота следования которых определяется сопротивлением резистора R7 и ёмкостью конденсатора C1. Данные импульсы через резистор R3 поступают на базу транзистора VT3 и открывают его. В момент открывания транзистора VT3 происходит закрывание транзистора VT1, и светодиоды HL1 – HL18 включенные в цепь коллектора транзистора VT1 гаснут. В результате этого происходит мигание светодиодов гирлянды.

В качестве светодиодов гирлянды HL1-HL18, были использованы светодиоды от однотипных китайских фонарей, у которых вышли из строя аккумуляторы. Конкретный тип светодиодов не был известен. Проведенные замеры показали, что рабочее напряжение светодиодов в схеме фонаря составляет около 3 Вольт, а ток протекающий через них (светодиоды в фонаре были включены параллельно) составляет от 21 до 26 мА. Исходя из этого, резистором R1 был установлен ток через светодиоды гирлянды HL1 – HL18 на уровне 23 мА. Светодиоды было решено разместить вместо ламп накаливания в ёлочной гирлянде отечественного производства, которая состояла из 18 ламп на 13,5 Вольт. Лампы в данной гирлянде находились внутри разноцветных пластмассовых шаров, которые разъединялись на две половинки. Установленные в гирлянде лампы имели гибкие выводы. Поэтому, выводы светодиодов было решено надставить проводами до такой-же длинны которые были у ламп накаливания. В результате этого, светодиоды удалось установить вместо штатных ламп, без каких-либо переделок в конструкции ёлочной гирлянды.

Чтобы случайно не включить в сеть 220 В переделанную ёлочную гирлянду, у ней была удалена сетевая вилка, а провода идущие к ней были подключены непосредственно к печатной плате устройства.

Детали

Транзистор VT1 КТ815Г можно заменить на КТ601, КТ602, КТ940 с любым буквенным индексом. Транзисторы VT2, VT3 – КТ312, КТ315, КТ3102 с любой буквой. Транзистор VT4 – KT117 с любым буквенным индексом. Стабилитрон VD1 КС212Ж можно заменить на КС508(А,Б), КС512А, Д814(Г,Д). Диодный мост КЦ407А заменим на КЦ412(Б,В). Конденсаторы С1, С2 – К50-35 или аналогичные импортные. В качестве трансформатора Т1 был использован трансформатор с выходным напряжением вторичной обмотки около 48 Вольт под нагрузкой, после выпрямления на С2 замеры напряжения показали 68 Вольт. Учитывая, что для питания светодиодов гирлянды требуется 54 Вольта (3В*18шт. =54В), получился запас по напряжению 14 Вольт (68В-54В=14В), на случай снижения напряжения сети. Трансформатор имеет вывод от центра вторичной обмотки, который так же был припаян к плате, чтобы исключить его случайного замыкания на элементы схемы.

Данный трансформатор Т1 вероятно был китайского производства, каких-либо обозначений на нём не было. В разрыв одного провода сетевой обмотки трансформатора был включён кнопочный выключатель, а в разрыв второго впаян предохранитель на 0,1 Ампер, на который надевается трубка ПВХ. При желании конечно можно установить и специальный держатель предохранителя. Трансформатор Т1 можно заменить на ТП-115-16, ТП-113-2*24 вторичные обмотки у которых включаются последовательно. Устройство было размещено в пластмассовой электромонтажной коробки 85*85*42 мм.

Частоту мигания светодиодов гирлянды можно менять путем изменения сопротивления резистора R7. Схему предложил YRIT.

Обсудить статью МИГАЮЩАЯ СВЕТОДИОДНАЯ ГИРЛЯНДА

Мигалка для ремонта ёлочной гирлянды на 230В

Схема устройства на одном тринисторе серии КУ201 или КУ202, обеспечивающего мигание одной лампы или гирлянды, известна уже давно. Она была описана, например, в [1]. Для многих радиолюбителей это была одна из первых конструкций, для своего времени почти не имевшая недостатков. Но спустя почти сорок лет некоторые недостатки всё-таки проявились.

Первый – большие габариты, обусловленные размерами тринисторов того времени. Второй – неэкономичность, обусловленная значительной мощностью, рассеиваемой на резисторах. Но оказалось, что простая замена устаревшего тринистора современным экономичным и малогабаритным невозможна.

Автор предлагаемой статьи рассказывает, как он решил эту проблему.

Всё началось с того, что накануне новогоднего праздника старая, немало поработавшая мигающая ёлочная гирлянда стала гореть, не мигая. Вышли из строя встроенные в неё лампы с биметаллическими контактами, обеспечивающими мигание. Запас таких ламп был исчерпан, хотя обычных, без встроенной “мигалки”, было ещё много.

Выбрасывать гирлянду показалось неразумным, захотелось её отремонтировать. А для этого нужно было найти замену отказавшим “мигалкам” – простую, чтобы за вечер можно было собрать несколько штук, и малогабаритную, чтобы новые “мигалки”, врезанные в разрывы проводов гирлянды, были незаметны на ёлке.

Схемы мигалок для гирлянд

Прежде всего, я попробовал собрать “мигалку” по приведённой в [1] схеме, изображённой на рис. 1, заменив в ней устаревший тринистор более современным PCR606.

Заодно увеличил сопротивление резисторов, чтобы понизить рассеиваемую на них мощность. Да и конденсатор взял намного меньшей ёмкости, что должно было уменьшить габариты конструкции. Но собранное за несколько минут устройство, в отличие от сорокалетнего прототипа, отказалось работать.

Подбор резисторов ничего не дал. Лампа горела, питаясь пульсирующим током через диод и открытый тринистор, но мигать отказывалась.

Поиск решения в Интернете ничего не дал. Пришлось самостоятельно разбираться, как заставить “мигалку” работать Дело оказалось в слишком высокой чувствительности управляющего электрода тринистора PCR606.

Тока, текущего через резисторы R1 и R2, было вполне достаточно для открывания тринистора в каждом полупериоде независимо от степени заряженности конденсатора С1.

Пришлось добавить в цепь управляющего электрода дини-стор D83, который стал открываться при определённом напряжении на конденсаторе, подавая открывающий сигнал на управляющий электрод тринистора, и закрываться после некоторой разрядки конденсатора, разрывая цепь управляющего электрода. После этого конденсатор вновь заряжается и цикл повторяется.

Рис. 1. Вариант 1 схемы мигалки для лампы на 220В.

В результате экспериментов получилось устройство, схема которого представлена на рис. 2. Резистор R1 обеспечивает необходимый для открывания тринистора VS2 ток, а диод VD1 обеспечивает зарядку конденсатора С1 только через резистор R2. Если собрать устройство без этих элементов, гирлянда (лампа EL1) лишь вспыхивает в моменты открывания динистора VS1 и сразу гаснет.

Рис. 2. Вариант 2 схемы мигалки для лампы на 220В.

Налаживание “мигалки” требует некоторых пояснений. Время, в течение которого конденсатор С1 заряжается до напряжения открывания динистора VS1, задаёт резистор R2.

Но, увеличивая его сопротивление свыше 470. .820 кОм, следует иметь в виду два момента. Первый – ток зарядки оксидного конденсатора С1 настолько мал, что может оказаться соизмеримым с его током утечки.

Во время экспериментов мне попался конденсатор, напряжение на котором при сопротивлении резистора R2 820 кОм не поднималось выше 25 В. Следовательно, чем больше сопротивление резистора R2, тем выше требования к качеству конденсатора С1.

Второй – при сопротивлении резистора R2 свыше 360 кОм наступает хаотическое мигание, практически мерцание лампы. Причём, пока сопротивление этого резистора не превысило примерно 400 кОм, большую часть времени лампа всё-таки мигает и лишь иногда на очень короткое время переходит в режим мерцания.

При дальнейшем увеличении сопротивления лампа начинает всё больше и больше времени мерцать, хаотически вспыхивая с разной яркостью. С моей точки зрения для гирлянды режим хаотического мерцания даже более интересен, чем просто мигание. Теме мерцающих гирлянд журнал в своё время уделил внимание в статьях [2] и [3].

Предлагаемое устройство при соответствующей подборке резистора R2 позволяет добиться схожего эффекта. Конечно, по сравнению с “мигалками”, описанными в [2] и [3], его возможности ограничены, но зато простота не идёт ни в какое сравнение.

Если использовать описанную “мигалку” именно в таком режиме, рекомендую уменьшить сопротивление резистора R2 до 100. 150 кОм и включить последовательно с ним переменный резистор сопротивлением от 680 кОм до 1 МОм. Это позволит устанавливать режим мерцания по своему вкусу и оперативно изменять его.

Читайте также:  Как сделать выкройку пижамы

Рис. 3. Вариант 3 схемы мигалки для лампы на 220В.

Время, в течение которого тринистор открыт, задаёт резистор R1 К сожалению, изменять это время с его помощью можно только в сторону уменьшения, поскольку при увеличении его сопротивления свыше 75. 100 кОм ток разрядки конденсатора становится слишком маленьким.

Поэтому время, в течение которого тринистор открыт, в основном зависит от ёмкости конденсатора С1. При указанных на схеме номиналах деталей гирлянда включается примерно на 1,5. 2 с, а выключается на 2. 2,5 с – продолжительность её свечения и длительность паузы почти одинаковы.

Это вполне приемлемо. После увеличения ёмкости конденсатора С1 до 100 мкФ частота мигания, как и ожидалось, уменьшилась практически вдвое.

Рекомендую перед сборкой устройства на печатной плате собрать и отладить его на макетной плате, подобрав резисторы и конденсатор, обеспечивающие нужную частоту мигания лампы.

Если в гирлянде несколько ветвей, то в каждую из управляющих ими “мигалок” рекомендую установить конденсаторы и резисторы разных номиналов, чтобы ветви мигали вразнобой. Имейте в виду, что мигание начинается не сразу после включения.

Если ёмкость конденсатора С1 47 мкФ, а сопротивление резистора R2 150. 300 кОм, то время от включения в сеть до момента, когда гирлянда начинает мигать, достигает 4. .5 с. При сопротивлении этого резистора 700.. 800 кОм задержка будет уже 10. 11 с.

Поскольку в рассматриваемом устройстве благодаря диоду VD2 через гирлянду протекает ток только положительных полупериодов сетевого напряжения. яркость её свечения понижена.

Это, впрочем, благотворно влияет на срок службы ламп. Если потребуется повысить яркость, диод можно заменить выпрямительным мостом.

При двухполупериодном выпрямлении средний ток зарядки конденсатора С1, естественно, увеличится вдвое, что можно скомпенсировать таким же увеличением сопротивления резистора R2.

Схема такого варианта “мигалки” представлена на рис. 3. Эффект мерцания в этом варианте не проявился даже при увеличении сопротивления резистора R2 до 1,2 МОм. Длительность пауз при этом возросла до 5 с. Продолжительность вспышек не изменилась.

Поскольку главной задачей было изготовление миниатюрной “мигалки”, в ней использованы малогабаритные детали. Тринистор PCR606 взят из исправного блока управления гирляндой китайского производства, в которой сгорели лампы. В таких блоках применяют и другие тринисторы, например, PCR406 или PCR806. Но их параметры очень близки, поэтому подойдёт любой исправный.

Детали

Симметричный динистор DB3 или заменяющий его DB4 можно найти в электронном балласте неисправной компактной люминесцентной лампы.

Диоды 1N4007 взяты оттуда же. В качестве VD2 диод IN4007 можно заменить практически любым выпрямительным с обратным напряжением не менее 400 В и выпрямленным током, не менее потребляемого гирляндой в момент включения (а он в несколько раз больше её рабочего тока), например, КД209А- КД209В.

Для диода VD1 требования менее жёсткие: обратное напряжение – не менее 100 В, допустимый прямой ток – не менее 100 мА. Здесь подойдёт не только 1N4007, но и КД102А или КД102Б.

Выпрямительный мост КЦ407А можно заменить импортным, например, Z683 или МВ10М. Они ещё более миниатюрны, да и найти их можно в электронных балластах люминесцентных ламп.

Мост можно составить и из четырёх диодов 1 N4007. Конденсатор С1 – малогабаритный, но с малым током утечки, иначе устройство может не заработать. “Мигалка”, собранная по схеме, изображённой на рис. 2, получилась довольно миниатюрной, её удалось собрать на плате размерами 20×17 мм.

Корпус для неё изготовлен из колпачка от маркера подходящего диаметра, открытый торец которого залит термоклеем, что исключило возможность случайного прикосновения к деталям и проводам, находящимся под напряжением сети.

Поскольку все детали “мигалки” находятся под напряжением сети, при её налаживании требуется соблюдать осторожность. А ещё лучше, все эксперименты проводить, питая устройство через разделительный трансформатор. Его можно очень быстро изготовить из трансформатора ТС-180 или подобного от цветного телевизора.

Соединив все имеющиеся вторичные обмотки этого трансформатора последовательно, можно получить изолированное от сети напряжение около 200 В, которого вполне достаточно для экспериментов.

При самостоятельном изготовлении разделительного трансформатора не старайтесь делать его мощным и наматывать обмотки толстым проводом.

Ведь его задача не только обеспечить гальваническую развязку с сетью, но и ограничить ток в цепи питания налаживаемой конструкции. Это убережёт многие детали от выхода из строя при ошибках в монтаже и замыканиях.

А. Карпачев, г. Железногорск Курской обл. Р-11-17.

  1. Вазнин А. Тринисторный переключатель. одной гирлянды. – Радио, 1979, Ns 11,0.53.
  2. Новогодние гирлянды, – Радио. 1975, № 11, С. 54, 55, 64
  3. Межлумян А. Переключатели гирлянд. – Радио, 1978, № 11, с. 50-52.

Делаем гирлянду своими руками. Такую не купишь

До новогодних праздников осталось чуть больше месяца, самое время подумать, как оригинально и красиво украсить свое жилище. Предлагаем необычный проект продвинутой гирлянды, которую не купишь ни в одном магазине.

Такое украшение будет отлично смотреться на окне и радовать глаз не только хозяев, но и проходящих мимо людей.

Собрать такую гирлянду не так уж и сложно, главное раздобыть все необходимые компоненты.

Что мы получим в итоге

Гирлянда, которую мы будем делать, состоит из адресных светодиодов. От обычных данные диоды отличаются наличием логического контакта, через который осуществляется управление цветом и яркостью свечения.

Соответственно, для управления такой гирляндой нужны “мозги”. Плата управления будет несколько раз в секунду отправлять разные сигналы на каждый диод, что позволит получить красивые динамические эффекты и анимацию.

Если обычная гирлянда просто включает диоды по расписанию или может максимум выдавать эффект снегопада, то у нас получится сделать бегущую строку с текстом и более 20 эффектов. Каждый режим свечения будет настраиваемым с возможностью менять большинство параметров.

Что нужно купить на AliExpress

Для сборки данной матрицы нужно купить такие компоненты:

▸ плата Arduino Nano – от 132 руб. Берите сразу несколько, стоят “ардуинки” недорого, а проектов с их участием большое множество.

▸ лента с адресными диодами WS2812B – от 660 руб. Лента продается в мотках по 50 или 100 диодов. Для интересной и заметной матрицы нужно минимум сотня огоньков.

▸ для того, чтобы спаять компоненты, потребуется паяльник. Давно купил себе популярную модель TS100 – 3541 руб. За два года использования ни разу не пожалел, это до сих пор самый продвинутый паяльник для радиолюбителей.

Тем, кто паяет редко, для пары проектов подойдет самая простая и доступная модель – 275 руб.

▸ питать готовую конструкцию можно от мощной зарядки для смартфона (5В 3А минимум) – от 257 руб., можно подключить к Power Bank, который выдает подобную мощность.

▸ не забывайте про канифоль и олово для пайки – от 107 руб.

Последние компоненты найдете в любом радиомагазине.

Выбираем размер для гирлянды


Оптимальная схема подключения и расположение диодов на окне

Чтобы подобрать размер будущей гирлянды, нужно замерить окно, на которое она будет крепиться в дальнейшем. Конечно, гирлянду можно повесить дома на стену, но мы же не будем прятать такую красоту от любимых соседей.

Диоды в ленте уже спаяны между собой секциями провода по 10 см. Это достаточное расстояние между лампами по вертикали. Чтобы получить пропорциональную матрицу, нужно будет крепить вертикальные куски ленты на аналогичном расстоянии друг от друга.

Замеряем, сколько диодов поместится в одной вертикальной полосе на окне (учтите, что открывающиеся стеклопакеты имеют меньшую высоту стеклянного блока, чем “глухие”). Прикидываем, сколько вертикальных полос поместится на окнах. Не забывайте, что в месте перехода от одного окна к другому придется сделать более длинное соединение.

Лучше всего заполнить матрицей целое окно минимум из трех створок или все окна балкона.

Паяем все компоненты

На странице проекта (Спасибо Алексу Гайверу!) можно увидеть различные модификации гирлянды: от самой базовой, которую мы сейчас соберем, до продвинутой с кнопками управления или Blutooth-модулем для подключения со смартфона.


Самый простой вариант сборки

Собираем согласно приведенной схемы:

1. Последовательно спаиваем или соединяем коннекторами части диодной ленты (если взяли более одного сегмента).

2. Логический контакт от ленты через резистор припаиваем к “ноге” D6 на Arduino Nano.

3. Контакты питания паяем к коннектору блока питания или к питанию через USB-порт, если планируем подключать к Power Bank.

4. Наша матрица с блоком управления готова, осталось только загрузить нужную прошивку в Arduino.

В дельнейшем легко добавить другие модули и элементы к данному проекту.

Готовим Mac к работе с Arduino

1. Скачиваем среду разработки Arduino IDE для прошивки нашего модуля.

2. Извлекаем программу из архива и переносим в папку Приложения.

3. Скачиваем библиотеки Java Runtime Environment для работы приложения.

4. Монтируем образ и устанавливаем пакет.

5. Скачиваем кекст (драйвер) для работы с китайскими аналогами платы Arduino по ссылке. Выбираем последнюю версию 1.5. Владельцам оригинального модуля драйвер не потребуется.

6. Извлекаем установщик из архива и запускаем процесс инсталляции.

7. В процессе разрешаем установку от неподтвержденного разработчика и перезагружаем Mac.

Настраиваем среду разработки Arduino IDE

1. Подключаем Arduino к Mac и запускаем приложение Arduino IDE.

2. В меню Инструменты – Плата выбираем тип используемой платы Arduino.

3. В меню Инструменты – Процессор выбираем тип процессора на плате. Чаще всего это ATmega328P, но на старых платах может использоваться ATmega328P (Old Bootloader). Проверяется методом перебора.

4. В меню Инструменты – Порт выбираем USB порт с подключенной платой Arduino. Если плата не отображается, следует удалить и заново установить кексты по инструкции выше.

5. Проверяем подключение командой Инструменты – Получить информацию о плате.

Все, наше приложение готово и настроено для работы с платой Arduino.

Загружаем проект для гирлянды в Arduino

1. Скачиваем проект с сайта разработчика.

2. Распаковываем архив и находим файл проекта GyverMatrixOS_v1.12.ino (можете использовать боле старые версии или новые после их добавления автором).

3. Импортируем библиотеки, которые нужны для работы проекта через меню Скетч – Подключить библиотеку – Добавить .ZIP Библиотеку…

Потребуется поочередно импортировать четыре библиотеки из архива с проектом, которые лежат в папке GyverMatrixBT-master/libraries/ESP, ARDUINO/.

4. Вносим необходимые изменения в проект:

Во-первых, на основной вкладке следует задать значения высоты и ширины полученной матрицы из диодов, чтобы корректно отображать все эффекты.

Во-вторых, нужно правильно указать угол начала матрицы (место подключения питания) и направление расположения диодов. Для этого можно воспользоваться подсказкой ниже:

В-третьих, нужно отключить неиспользуемые эффекты. Проект получился достаточно большой и наша плата Arduino не сможет вместить все имеющиеся анимации.

Для редактирования списка эффектов нужно перейти на вкладку Custom и удалить ненужные блоки начиная с “case” и заканчивая ” break;”

Эффекты можно менять местами или вставлять для повторения. Не забывайте про синтаксис.

Когда итоговый порядок эффектов будет определен, нужно еще раз проверить нумерацию от 0 до последнего пункта и обязательно изменить параметр MODES_AMOUNT на итоговое количество эффектов (считать вместе с нулевым).

Здесь же настраивается текст и цвет для бегущих строк.

В-четвертых, настраиваем дополнительные параметры для каждого из эффектов.

Часть настроек находится на главной вкладке проекта, а остальные – на вкладке effects.

5. Когда все настройки внесены, можем загружать прошивку на Arduino.

При возникновении ошибок они будут отображаться в сервисном окне снизу. Ошибки могут быть связаны с отсутствующими библиотеками (внимательно повторяем инструкцию по настройке Arduino IDE) или с нехваткой места на плате (об этом будет явно указано в консоли).

После прошивки отключаем плату от компьютера и подаем питание выбранным способом: через адаптер от сети или при помощи Power Bank.

Для внесение поправок или изменений в эффектах нужно будет снова подключить Arduino к Mac и загрузить измененную прошивку.

Остается только закрепить гирлянду на окно и дождаться темного времени суток. Скопление зевак и прохожих под окном гарантировано.

(4.72 из 5, оценили: 36)

Необычные идеи изготовления новогодней светодиодной гирлянды своими руками

Зимой отмечают один из самых значимых праздников в году – Новый год. Торжество растягивается на несколько дней, затрагивая рождественские каникулы. К этому времени каждый человек стремится украсить свою квартиру или частный дом, используя праздничную иллюминацию.

Совершенно необязательно покупать светильники в магазине: вы можете сделать светодиодную гирлянду самостоятельно, причем речь идет об автономных устройствах, которые питаются от батареек, либо о более требовательных промышленных, подключаемых к электрической сети переменного тока напряжением 220 В. Изделие, изготовленное собственными руками, будет казаться намного привлекательнее и ярче, поэтому станет главным новогодним украшением в доме.

Читайте также:  Как сделать самурайский меч

Светодиодные гирлянды не стоят слишком дорого, но все-таки намного приятнее наслаждаться собственным творением. Вдобавок вы сможете создать источник света, в полной мере удовлетворяющий индивидуальным запросам. Наконец, себестоимость самоделки все равно будет в несколько раз меньше.

Особенности монтажа гирлянды своими руками

Для начала разберемся, как устроены гирлянды и в чем основные отличия. Главным принципиальным отличием является используемая схема, в зависимости от которой гирлянды делятся на несколько типов:

  • классическая гирлянда-нить;
  • сетка;
  • занавес;
  • сосулька;
  • дюралайт (разновидность светодиодной ленты);
  • киплайт;
  • строб-лайт с неповторимым мерцанием.

Важно! Следует обращать внимание на мощность используемых led-диодов. Изделия, эксплуатируемые снаружи, имеют более высокий коэффициент полезного действия, поскольку практически всю энергию преобразуют в свечение, а не тепло, как это происходит с обычными гирляндами, и наиболее ярко заметно при использовании лампы накаливания.

Данные устройства защищены от различных негативных факторов, включая атмосферные осадки, экстремально низкие или высокие температуры, сильные порывы ветра, влагу.

Подбор необходимых материалов и элементной базы

Для самостоятельного изготовления светодиодной гирлянды вам понадобятся следующие инструменты, материалы и компоненты:

  • паяльник с канифолью и припоем;
  • изолента;
  • термоусадочные кембрики, повышающие изоляционные свойства;
  • светодиоды;
  • резисторы.

Светодиоды можно получить, разобрав неработающие компьютерные аксессуары – клавиатуры и мыши. От качества выбранных комплектующих и соединений, надежности схемы эксплуатации зависит правильная функциональность самодельной гирлянды.

При последовательном подключении диодов они будут работать, но при этом существенно возрастет напряжение, что повысит количество выделяемого тепла, и в конечном счете приведет устройство к поломке. Это главная причина применения резисторов, снижающих напряжение и изменяющих прочие входные характеристики тока, за счет чего происходит смена цвета при свечении источников.

Выбор светодиодов

Главными элементами гирлянды являются светодиоды. Основными технико-эксплуатационными параметрами считаются рабочее напряжение и ток, протекающий в прямом направлении. Обе характеристики нужны будут для расчета электрической цепи и потребления электроэнергии.

В среднем, светодиод работает при силе тока 20 мА. Для уменьшения количества потребляемого электричества используются резисторы, причем значение сопротивления данного элемента зависит от параметров конкретного led-диода. В сети можно найти немало калькуляторов, позволяющих выполнить простой и быстрый расчет резистора под выбранный светодиод.

Напряжение питания элемента указывает на тот момент, когда на p-n переходе падает напряжение, что происходит за счет внутреннего сопротивления изделия. Другими словами, если речь идет об источнике питания 12 В и светодиодах на 3 В, то последовательно можно подключать не более четырех данных устройств, поскольку каждое из них снижает питающее напряжение (12 В) на величину собственного (3 В). Если добавить в схему пятый элемент, то он практически не будет светиться.

Напряжение зависит от конкретного производителя и цветов светодиода. К примеру, диоды с синими, белыми и зелеными кристаллами имеют рабочее напряжение 3 В, желтыми и красными – 1,5-2,5 В. Потребляемая мощность диодов рассчитывается по одному из законов Ома: P = U * I, где P – мощность, U и I – напряжение и сила тока соответственно.

Если рассматривать значения, приведенные выше, то при их подстановке в формулу мы получим следующее значение: 3 (В) * 0,02 (А) = 0,06 Вт. При последовательном включении 4 светодиодов, данная характеристика увеличится до 0,06 * 4 = 0,24 Вт. При последовательном подключении ограничивающего резистора напряжение возрастет еще на 0,06 Вт, поэтому суммарная потребляемая мощность составит 0,30 Вт. Если вы используете несколько групп по 3 светодиода, которые подключаются параллельно, то данная величина должна быть умножена на их число.

Важно! Это не основные характеристики светодиодов. Важно также учитывать световую отдачу, угол свечения и температуру цвета. Светоотдачу можно вычислить в зависимости от габаритов изделия: для элементов диаметром около 5 мм данная величина составляет 1-5 лм. Белые и синие кристаллы светят намного ярче цветных. Они даже бывают сверхяркими.

Сила света красного led-диода на 1,8 В составляет 0,2-2,0 кд, белого – 10-20 кд. Тем не менее, данные характеристики не вносят никаких корректировок в схему расчета и выбираются исключительно исходя из целей дальнейшей эксплуатации устройства.

Выбор резисторов

При выборе резисторов нужно ориентироваться на мощность и сопротивление. Второй параметр зависит от числа последовательно подключаемых к цепи светодиодов и их рабочего напряжения, мощность – от величины тока. Практически всегда будет достаточно использовать резистор мощностью 0,125 Вт.

При эксплуатации светодиодов напряжением 3 В принято использовать резисторы со следующим сопротивлением в зависимости от количества элементов:

  • 1 светодиод – 470 Ом;
  • 2 – 300 Ом;
  • 3 – 150 Ом;
  • 4 – 1 Ом.

Если же планируется эксплуатация диодов напряжением 2,1 В, то зависимость будет следующей:

  • 1 светодиод – 510 Ом;
  • 2 – 390 Ом;
  • 3 – 300 Ом;
  • 4 – 180 Ом;
  • 5 – 75 Ом.

к содержанию ↑

Выбор блока питания

В случае со светодиодной гирляндой должен использоваться блок питания на 12 или 24 В с запасом выходной мощности (приблизительно 25% сверху суммарной мощности потребляемой цепи). Выбор конкретного блока зависит от числа светодиодов – для схемы с 7 и более элементами желательно использовать изделие на 24 В.

Блок на 24 Вт позволяет осуществить коммутацию 11 последовательно соединенных диодов на 2,1 В или 6 на 3 Вт. Практически всегда будет достаточно воспользоваться небольшим блоком питания напряжением 24 В и силой тока 0,5 А с выходной мощностью 12 В.

Расчет схемы подключения

Даже последовательно соединяемые светодиоды должны содержать в схеме токоограничивающий резистор:

  • красные элементы с падением напряжением 1,5-2 В – резистор сопротивлением 420 Ом;
  • зеленые и синие на 3-3,2 В – 82 и 75 Ом соответственно.

Можно использовать стандартный контроллер 220 В для RGB-технологии с общим анодом: на все каналы подается «минус», а на общий кабель – «плюс».

Изготовление гирлянды из светодиодов

При последовательно подключенных светодиодах можно создать мерцающую гирлянду. На ее создание уйдет минимум времени, а с задачей сможет справиться практически каждый человек с начальными знаниями электрики. Самое главное в данном случае: четко следовать инструкции.

Для самостоятельной сборки светодиодной гирлянды своими руками вам нужно выполнить действия в следующем порядке:

  1. Определитесь с желаемым расстоянием между соседними источниками (диодами).
  2. Раскрутив провод, маркером любого цвета нанесите соответствующие отметки на те места, где предположительно будут установлены светодиоды. В идеале расстояние между ними должно составлять 200-250 мм.
  3. В тех точках, где были оставлены пометки, удалите с провода изоляцию, создав «голые островки» длиной по 20-30 мм. Действовать нужно аккуратно, чтобы не повредить сам кабель. Это упростит процесс будущего крепления диодов.
  4. На такие участки нужно нанести канифоль с припоем.

  1. К образовавшимся наплывам закрепите светодиоды, соединяя паяльником их ножки с проводом. Учтите, что данный вариант крепления будет менее надежным, поэтому придется воспользоваться усиливающими фиксаторами, которые также закроют оголенные части гирлянды.
  2. Узкий скотч нарежьте на разные кусочки длиной 30-40 мм, затем примените в качестве изоляции для диодов. В результате этих действий каждый светодиод должен быть расположен в «кармашке», крепко удерживающем его на кабеле. Обмотать нужно все источники света на проводе.
  3. Затем нужно обеспечить герметизацию верхней части «кармашка». Для этого сгодится силиконовый герметик, который не просто повышает прочность конструкции, но и совершенствует свечение.
  4. Остается подключить к схеме резистор и блок питания, а затем протестировать работу самодельного оборудования.

Обратите внимание! Данная разновидность гирлянды не боится холода, поэтому может эксплуатироваться в системах наружной иллюминации. В таком случае рекомендуется применять блоки питания на 8-12 В. Чтобы проверить работоспособность изделия, вы можете применить аккумуляторную батарейку смартфона, блок питания от зарядки телефона.

Подготовка к созданию светодиодной гирлянды на батарейках

Не менее красиво смотрится светодиодная гирлянда, подключаемая к батарейкам. Кроме того, такое изделие будет максимально безопасным для детей. Данная разновидность иллюминации используется в качестве наружного источника света. При перемещении в воздухе будет оставаться яркий разноцветный шлейф, который дизайнеры часто используют для создания в пространстве разнообразных узоров. Изделие должно быть защищено от ветра, осадков и низкой температуры.

Для производства гирлянды на батарейках вам будут нужны:

  • светодиоды диаметром 10 мм разных цветов с рассеивающим эффектом;
  • магниты диаметром 1,3 и толщиной не более 30 мм;
  • изолента или узкий скотч;
  • литиевая батарейка (например, CR2032 3V);
  • эпоксидный клей.

Процесс изготовления гирлянды на литиевых батарейках

Для создания яркой мерцающей гирлянды потребуется выполнить качественную пайку. Спешить в процессе выполнения работы не стоит. Запаситесь терпением, будьте аккуратны и внимательны, следуйте шагам:

  1. Выполните тестирование светодиодов, чтобы увидеть уровень их свечения. По очереди подключите компоненты к литиевой батарейке (одну, более длинную ножку, соедините с «плюсом», другую короткую – с «минусом»).
  2. Зафиксируйте положение диодов, затем каждый элемент вместе с батарейкой оберните скотчем или изолентой в 2 слоя.
  3. С положительным контактом батарейки совместите магнит, зафиксировав его.
  4. Каждая часть конструкции должна быть установлена на тонкий провод. Проверьте работоспособность изделия!

Использование резисторов парами

В данном случае вы сможете снизить себестоимость изделия, сделав его более экономичным, но помните: гораздо лучше с точки зрения электрической безопасности и долговечности оборудования соединять каждый светодиод с собственным резистором. К тому же, последние компоненты дешевые.

Как сделать гирлянду из лампочек с «бегущими огнями»

Для создания праздничной иллюминации с «бегущими огоньками» вам понадобится не менее 3 гирлянд, причем каждая из них должна состоять из нескольких групп параллельно подключенных «фонариков». Для воссоздания подобного светящегося эффекта понадобится трехфазный мультивибратор с транзисторами, которые обозначены VT1, TV2 и VT3. В плече второго транзистора устанавливается конденсатор емкостью 0,1 мкФ, который значительно упрощает запуск изделия.

Вам понадобится выпрямитель тока с двумя полупериодами, который обеспечит питание автомата. Речь идет о выпрямительных диодах VD1, VD2, VD3 и VD4. Не стоит путать их со светодиодами!

Такой вариант позволит создать самые разнообразные по форме варианты – начиная от круга, треугольника или квадрата и заканчивая сердцем и тематическими фигурками (снеговик, дед Мороз, Снегурочка, олени в упряжи).

Создание гирлянды из старой клавиатуры

Для ускоренного создания гирлянды можно воспользоваться одним из самых бюджетных вариантов, связанных с разборкой старых компьютерных устройств ввода – мыши и клавиатуры.

В процессе выполнения работы вам понадобятся:

  • несколько старых клавиатур, которые могут быть даже нефункционирующими;
  • паяльник;
  • резисторы;
  • изолента или скотч;
  • термоусадочные кембрики;
  • припой и канифоль.

Сначала удалите провода из клавиатуры и отсоедините USB-кабель. Для повышения шансов на выполнение качественной работы вам понадобятся около 5 устройств ввода: возможно, таковые имеются у ваших друзей, близких, поспрашивайте на городском форуме.

Каждая клавиатура оснащена 3-мя светодиодами, указывающими на работу 3 основных функций изделия на кнопках Num Lock, Caps Lock и Scroll Lock. Если же вам под руку попалась ненужная геймерская клавиатура, то все будет намного проще, ведь она зачастую включает огромное количество светодиодов.

Выполните разборку изделия и вытащите из него маленькую плату с контроллером. Она будет использоваться для соединения различных лампочек. Создайте изделие из 12 элементов, подключенных к резисторам по параллельной схеме. Превышать это значение не стоит, поскольку стандартный USB-кабель, от которого питается клавиатура, передает напряжение до 5 В при силе тока 500 мА.

Рабочее напряжение отдельных элементов не превышает 5 В. При прямом подключении без резистора будет происходить перегрев, который рано или поздно приведет к перегоранию компонентов. Именно поэтому напряжение понижается за счет дополнительного сопротивления или методом попарной спайки элементов. Во втором случае каждый отдельный компонент будет понижать напряжение «своего соседа». К сожалению, такой вариант считается менее оптимальным и эффективным: лучше всего следить за установленным лимитом вольтажа и не выходить за их пределы.

Далее следует взять простой кабель и на одной из его сторон удалить оплетку, а затем выполнить пайку. После создания изделия нужной длины и формы, остается заизолировать оголенные части.

Создать самодельную новогоднюю гирлянду из светодиодов проще простого: запаситесь необходимыми элементами и инструментами, выполните расчет (с этим могу помочь специалисты) или найдите в сети любую проверенную схему подключения. Затем следуйте нашим инструкциям, и в итоге получите функционирующее, качественное и безопасное изделие.

Ссылка на основную публикацию